
My Unique Solution to Leetcode #123 With

Intuition and Proof

Jacob Goldberg

December 2025

Contents

1 Introduction 1
1.1 The Problem . 2

1.1.1 Examples . 2
1.1.2 Constraints . 2

2 My Solution 3
2.1 The Solution . 3
2.2 The Intuition . 3
2.3 The Proof . 4

2.3.1 Definitions . 4
2.3.2 Key Lemmas . 5
2.3.3 Main Theorem . 5

3 The Standard DP Solution 7
3.1 The Solution . 7
3.2 The Intuition . 7
3.3 The Proof . 8

3.3.1 Definitions . 8
3.3.2 Key Lemmas . 8
3.3.3 Main Theorem . 8

4 Conclusion 9

1 Introduction

While practicing some Leetcode, I came across one of my favorite problems: 123.
Best Time to Buy and Sell Stock III. This problem has an elegant DP solution
with time complexity O(n); however, when I originally solved this problem,
I came up with a different approach, also with O(n) time complexity, that I
thought I would share in detail here. Before I spoil the fun, I recommend you
attempt the problem yourself.

1

1.1 The Problem

You are given an array prices where prices[i] is the price of a given stock
on the ith day.

Find the maximum profit you can achieve. You may complete at most two
transactions.

Note: You may not engage in multiple transactions simultaneously (i.e., you
must sell the stock before you buy again).

class Solution:
def maxProfit(self, prices: List[int]) -> int:

...

1.1.1 Examples

Example 1:
Input: prices = [3,3,5,0,0,3,1,4]
Output: 6
Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit =
3-0 = 3. Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit =
4-1 = 3.

Example 2:
Input: prices = [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit =
5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
engaging multiple transactions at the same time. You must sell before buying
again.

Example 3:
Input: prices = [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.

1.1.2 Constraints

• 1 <= prices.length <= 105

• 0 <= prices[i] <= 105

2

2 My Solution

2.1 The Solution

class Solution:
def maxProfit(self, prices: List[int]) -> int:

best_return, best_buy, best_sell = maxProfitHelper(prices)

before, after = prices[: best_buy], prices[best_sell + 1:]

during = prices[best_buy + 1: best_sell]

during.reverse()

best_before = maxProfitHelper(before)[0]

best_after = maxProfitHelper(after)[0]

best_during = maxProfitHelper(during)[0]

return max(best_before, best_after, best_during) + best_return

def maxProfitHelper(prices):

if len(prices) <= 1:

return (0, 0, 0)

max_profit = (0, 0, 0)

buy, max_sell = (prices[0], 0), (prices[0], 0)

for i in range(1, len(prices)):

price = prices[i]

if price < buy[0]:

profit = (max_sell[0] - buy[0], buy[1], max_sell[1])

max_profit = max(max_profit, profit)

buy, max_sell = (price, i), (price, i)

max_sell = max(max_sell, (price, i))

profit = (max_sell[0] - buy[0], buy[1], max_sell[1])

max_profit = max(max_profit, profit)

return max_profit

2.2 The Intuition

To understand this strategy, first ignore the “two transactions” part altogether.
If you were only allowed to make one transaction, the goal would simply be

to buy at the lowest price seen so far and sell at the highest price afterward.
There is a single buy–sell interval that achieves the maximum possible profit,
and no other individual transaction can beat it. This transaction becomes the
natural backbone of the solution. (This is the same strategy behind the ”easy”
Leetcode #121: Best Time to Buy and Sell Stock).

Now suppose we are allowed a second transaction. Once the best single trans-
action is fixed, there are only three meaningful places where another transaction

3

could live:

• completely before the best transaction,

• completely after the best transaction, or

• entirely inside the interval of the best transaction.

That’s it. Any transaction that partially overlaps with the best one is not
actually doing anything new—it can always be shifted so that it starts at the
same buy time as the optimal transaction without losing profit. In other words,
overlap never helps; it just disguises one of the three cases above.

This observation is what drives the algorithm. We first find the single best
transaction and record its buy and sell indices. Then we independently compute
the best profit achievable in each of the three regions: before, after, and inside
that interval. When we search inside the interval we reverse the array because
we are first selling from the first transaction then buying for the second, so we
want to find the biggest dip (which is the biggest gain of the reversed array).
This gain found in the reversed array is the extra profit squeezed out, by selling
right before this dip and buying the dip within the best transaction interval,
on top of the profit from the best transaction. The best valid two-transaction
solution must consist of the optimal transaction profit plus the profit from the
best option among those three.

Each step is done in linear time. Finding the best single transaction is a
single pass through the array. Each of the three follow-up computations is also
a single pass over a disjoint subarray. As a result, we loop over the entire prices
array twice and the overall time complexity remains O(n), with constant extra
space.

The proof below formalizes this intuition and shows that no valid solution
can fall outside these cases.

2.3 The Proof

2.3.1 Definitions

Definition 1. A transaction pair is an ordered pair T = (b, s) with 0 ≤ b ≤
s < n, yielding profit

|T | = prices[s]− prices[b].

Definition 2. Let A be the set of all possible transaction pairs in prices. We
define the optimal transaction pair, T ∗, such that ∀T ∈ A: |T ∗| ≥ |T |.

Definition 3. A transaction pair X overlaps transaction pair Y if bX < bY ≤
sX ≤ sY or bY ≤ bX ≤ sY < sX .

4

Definition 4. Define the following quantities:

Pbefore = max
0≤b≤s<b∗

(
prices[s]− prices[b]

)
,

Pafter = max
s∗<b≤s<n

(
prices[s]− prices[b]

)
,

Pduring = max
b∗≤b≤s≤s∗

(
prices[b]− prices[s]

)
.

2.3.2 Key Lemmas

Lemma 1. Let T ∗ = (b∗, s∗) be the optimal transaction. Then

prices[b∗] = min
0≤i≤s∗

prices[i].

Proof. Assume for contradiction that there exists an index i ≤ s∗ such that

prices[i] < prices[b∗].

Then the transaction (i, s∗) yields profit

prices[s∗]− prices[i] > prices[s∗]− prices[b∗] = |T ∗|,

contradicting the optimality of T ∗. Hence, no such index i exists, and b∗ attains
the minimum price on [0, s∗].

2.3.3 Main Theorem

Theorem 1. The algorithm returns the maximum achievable profit, Palgorithm =
|T ∗|+max(Pbefore, Pafter, Pduring), using at most two transactions.

Proof. Assume for contradiction that there exists a feasible solution, S, using at
most two transactions whose total profit, PS , is strictly greater than the profit
returned by the algorithm.

Case 1: S consists of a single transaction, T1.
We know that:

PS = |T1|
≤ |T ∗|
≤ |T ∗|+max(Pbefore, Pafter, Pduring)

= Palgorithm

meaning PS ≤ Palgorithm. We have reached a contradiction since PS ̸> Palgorithm.

Case 2: S consists of two non-overlapping transactions, {T1, T2}, where 0 ≤
b1 ≤ s1 ≤ b2 ≤ s2 < n.

Here we have two sub-cases:

Case 2.a: Neither transaction in S overlaps T ∗.

5

Here we have two sub-cases:

Case 2.a.i: b∗ ≤ b1 ≤ s2 ≤ s∗, meaning both transactions happen within
the optimal transaction range.

We see that:

prices[s1]− prices[b2] ≤ Pduring, prices[s2]− prices[b1] ≤ |T ∗|.

We then see that:

PS = |T1|+ |T2|
= prices[s1]− prices[b1] + prices[s2]− prices[b2]

≤ |T ∗|+ Pduring

≤ |T ∗|+max(Pbefore, Pafter, Pduring)

= Palgorithm

meaning PS ≤ Palgorithm. We have reached a contradiction since PS ̸> Palgorithm.

Case 2.a.ii: There exists some i ∈ {1, 2} such that (si < b∗) ∨ (bi > s∗),
meaning at least one transaction happens outside the optimal transaction range.

Without loss of generality, T1 happens outside the optimal transaction range.
We see that:

|T1| ≤ max(Pbefore, Pafter), |T2| ≤ |T ∗|

We then see that:

PS = |T1|+ |T2|
≤ max(Pbefore, Pafter) + |T ∗|
≤ |T ∗|+max(Pbefore, Pafter, Pduring)

= Palgorithm

meaning PS ≤ Palgorithm. We have reached a contradiction since PS ̸> Palgorithm.

Thus, Case 2.a cannot occur.

Case 2.b: At least one transaction in S overlaps T ∗.
Without loss of generality, say T1 overlaps T ∗ and b1 < b∗ ≤ s1 ≤ s∗. Define

a new transaction T ′
1 = (b∗, s1), and let S ′ = {T ′

1, T2}. We claim that S ′ is a
feasible solution whose total profit is at least that of S.

By Lemma 1, prices[b∗] ≤ prices[b1] since b1 < b∗ ≤ s1 ≤ s∗. Therefore,

|T ′
1| = prices[s1]− prices[b∗]

≥ prices[s1]− prices[b1]

= |T1|

and so replacing T1 with T ′
1 = (b∗, s1) does not decrease profit.

6

Second, T ′
1 lies entirely within [b∗, s∗], and therefore does not overlap T ∗.

Moreover, since S was a feasible and b1 < b∗ ≤ s1, shifting the buy time of
T1 forward preserves non-overlap with T2 and preserves feasibility. Hence S ′
consists of two non-overlapping transactions.

Therefore, S ′ satisfies the conditions of Case 2.a, meaning

PS ≤ PS′ ≤ Palgorithm,

yielding a contradiction since PS ̸> Palgorithm.

Thus, Case 2.b cannot occur.

Therefore, since Case 1 and Case 2 cannot occur, no such solution S exists,
and the algorithm is correct.

3 The Standard DP Solution

3.1 The Solution

class Solution:
def maxProfit(self, prices: List[int]) -> int:

first_profit, second_profit = 0, 0

first_buy, second_buy = float("inf"), float("-inf")

for price in prices:

first_buy = min(price, first_buy)

first_profit = max(first_profit, price - first_buy)

second_buy = max(second_buy, first_profit - price)

second_profit = max(second_profit, second_buy + price)

return second_profit

3.2 The Intuition

The intuition is very similar to the one transaction version; however, instead of
just keeping track of the maximal profit from one transaction we also keep track
of the most profit we could get from a second buy. The best potential gain of
using your second buy at each index in the array is the maximal profit we have
seen so far, calculated in the same way by buying at the lowest price seen so far
and selling at the highest price thereafter, minus the price at the current index.
We maximize this potential gain from a second buy as we iterate through prices.
The maximal profit from at most two transactions is simply the potential gain
from a second buy plus the highest price at which we can sell it thereafter.

This solution is very elegant; we loop over the entire prices array just once,
resulting in an overall time complexity of O(n) with constant extra space.

7

3.3 The Proof

3.3.1 Definitions

Definition 5. For each index i ∈ {0, . . . , n − 1}, define the following optimal
values:

P1(i) = max
0≤b≤s≤i

(
prices[s]− prices[b]

)
,

P2(i) = max
0≤b1≤s1<b2≤s2≤i

(
(prices[s1]− prices[b1]) + (prices[s2]− prices[b2])

)
,

with the convention that the maximum over an empty set is 0.

Definition 6. Define auxiliary quantities

B1(i) = min
0≤j≤i

prices[j],

B2(i) = max
0≤j≤i

(
P1(j)− prices[j]

)
.

3.3.2 Key Lemmas

Lemma 2. For all i, the value P1(i) satisfies

P1(i) = max
(
P1(i− 1), prices[i]−B1(i)

)
.

Proof. Any optimal one-transaction strategy over [0, i] either sells on day i or
sells earlier. If it sells earlier, its profit is P1(i−1). If it sells on day i, optimality
requires buying at the minimum price in [0, i], which is B1(i). Taking the
maximum of these two cases yields the result.

Lemma 3. For all i, the value P2(i) satisfies

P2(i) = max
(
P2(i− 1), B2(i) + prices[i]

)
.

Proof. Any optimal two-transaction strategy over [0, i] either sells its second
transaction strictly before i, yielding profit P2(i − 1), or sells its second trans-
action on day i.

In the latter case, suppose the second transaction buys on day j < i and
sells on day i. The total profit is

P1(j) + (prices[i]− prices[j]) = (P1(j)− prices[j]) + prices[i].

Maximizing over all j ≤ i yields B2(i) + prices[i]. Taking the maximum of the
two cases gives the result.

3.3.3 Main Theorem

Theorem 2. The algorithm returns the maximum achievable profit using at
most two non-overlapping transactions.

8

Proof. We prove by induction on i that after processing index i, the algorithm
maintains

first profit = P1(i) and second profit = P2(i).

Base Case (i = 0). No transaction is possible using only day 0, so by
definition

P1(0) = P2(0) = 0.

The algorithm initializes

first profit = second profit = 0,

hence the claim holds.
Inductive Hypothesis. Assume that after processing day i− 1,

first profit = P1(i− 1) and second profit = P2(i− 1).

Inductive Step. On day i, the algorithm updates

first buy← min(first buy, prices[i]),

so first buy = B1(i). It then updates

first profit← max(first profit, prices[i]− first buy),

which equals P1(i) by Lemma 1.
Next, the algorithm updates

second buy← max(second buy, first profit− prices[i]),

so second buy = B2(i). Finally, it updates

second profit← max(second profit, second buy+ prices[i]),

which equals P2(i) by Lemma 2.
Thus, the inductive claim holds for day i.
By induction, the claim holds for all i ∈ {0, . . . , n− 1}. In particular, after

the final iteration,
second profit = P2(n− 1),

which is the maximum achievable profit using at most two transactions.

4 Conclusion

Undoubtedly the standard DP solution is extremely clean: it folds the entire
problem into a single pass, and its proof follows almost mechanically from the
update rules.

My approach takes a slightly longer route. By first fixing the best single
transaction and then reasoning about where a second transaction can live, it
makes the structure of the solution explicit. Instead of tracking states, it parti-
tions the problem into a three unavoidable cases.

I hope I was able to share new perspective on this problem!

9

